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Estimation of vegetation canopy leaf area index and fraction
of absorbed photosynthetically active radiation
from atmosphere-corrected MISR data

Y. Knyazikhin,1 J. V. Martonchik,2 D. J. Diner,2 R. B. Myneni,1 M. Verstraete,3

B. Pinty,3 and N. Gobron3

Abstract. The multiangle imaging spectroradiometer (MISR) instrument is designed to
provide global imagery at nine discrete viewing angles and four visible/near-infrared spectral
bands. This paper describes an algorithm for the retrieval of leaf area index (LAI) and
fraction of photosynthetically active radiation absorbed by vegetation (FPAR) from
atmospherically corrected MISR data. The proposed algorithm is designed to utilize all the
information provided by this instrument, using a two-step process. The first step involves a
comparison of the retrieved spectral hemispherically integrated reflectances with those
determined from the model which depend on biome type, canopy structure, and
soil/understory reflectances. The biome/canopy/soil/understory models that pass this
comparison test are subject to the second step, which is a comparison of their directional
reflectances at the MISR angles to the retrieved spectral directional reflectances. This
procedure, however, can produce multiple acceptable solutions. The measure theory is used to
specify the most probable values of LAI and FPAR using the set of all acceptable solutions.
Optimization of the retrieval technique for efficient global processing is discussed. This paper
is the second of a two-part set describing a synergistic algorithm for producing global LAI
and FPAR fields from canopy reflectance data provided by the MODIS (moderate resolution
imaging spectroradiometer) and MISR instruments.

1. Introduction

The multiangle imaging spectroradiometer (MISR), an
instrument onboard the EOS-AM1 platform, will make global
observations of the Earth's surface at 1.1 km spatial resolution
with the objective of determining the atmospherically
corrected reflectance properties of most of the land surface
and the tropical ocean [Diner et. al., 1998a; Martonchick et
al., 1998]. Two types of atmospherically corrected
bidirectional canopy reflectances and their integrated values
will be available from this instrument. The hemispherical
directional reflectance factor (HDRF) and bihemispherical
reflectance (BHR) characterize surface reflectance under
ambient sky conditions, i.e., direct and diffuse illumination.
The HDRF and BHR are independent of the kind of canopy
radiation model used and are shown to be highly accurate
when correct atmospheric information is used [Diner et al.,
1998a, Martonchik et al., 1998]. The bidirectional reflectance
factor (BRF) and directional hemispherical reflectance (DHR)
are defined for the special case when the atmosphere is

absent. The removal of the effects of diffuse radiance from
the HDRF requires the use of a model for the bidirectional
reflectance distribution function (BRDF) which makes the
retrieved BRF and DHR model dependent. The accuracy of
these variables is lower than that for the HDRF and BHR
because they include uncertainties in BRDF models.
However, the BRF in the visible spectral bands allows for
better characterization of the angular signature of canopy
reflectances because it does not depend on atmospheric
conditions, i.e., the BRFs have more intrinsic canopy
information. Therefore a technique for the interpretation of
these data must account for these features of retrieved canopy
reflectances. The aim of this paper is to derive an algorithm
for the retrieval of leaf area index (LAI) and fraction of
photosynthetically active radiation absorbed by vegetation
(FPAR) from canopy reflectances satisfying these
requirements.

The measure theory is used to establish relationships
between the surface reflectances, uncertainties in their
retrieval, and canopy structure. This technique is a powerful
way to relate values one quantifies (e.g., probabilities,
weights, mass, volume, area, etc.) to the information one
measures. Directly or indirectly, most modern approaches use
measures. Therefore we use this technique to make the
algorithm flexible, i.e, to incorporate various approaches
within one algorithm. The measure theory starts with a
description of spaces of all possible situations encountered in
reality and which are taken into account by the retrieval
technique. Therefore the second section begins with a
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description of the spaces of canopy realizations and
observations of canopy reflectances, as well as the
establishment of relationships between these spaces and
uncertainties in measured canopy reflectances. The proposed
algorithm aims to retrieve the most probable values of LAI
and FPAR using these relationships. Numerical examples
demonstrate the retrieval capability of this approach. In
section 3, we analyze the case when canopy reflectances are
only slightly sensitive to the canopy realizations and how this
situation can be quantified. Some basic information on
measure theory is presented in the Appendix. The algorithm
interacts only with elements of the spaces of canopy
realizations and observations of canopy reflectances. These
spaces are static element of the algorithm, i.e., look-up table
termed the CART (canopy architecture radiative transfer) file
in the MISR Algorithm Theoretical Basis Document [Diner et
al., 1998b]. This provides the independence of the algorithm
from a particular canopy radiation model. A question then
arises as to how the CART file has to be filled in. In
answering this question, we aimed (1) to minimize the size of
the CART file and (2) to minimize the dependence of the
CART file on a particular canopy radiation model. These
problems are discussed in sections 4 through 8. Evaluation of
FPAR is presented in section 9. Section 10 summarizes the
flow of the MISR LAI/FPAR algorithm.

An Algorithm Theoretical Basis Document (ATBD) for
the MISR surface retrieval algorithm is available at
http://www-misr.jpl.nasa.gov and includes implementation
details of the LAI/FPAR retrieval technique. This paper
presents a theoretical exposition of the LAI/FPAR algorithm
that will be implemented at launch.

2. Description of LAI Retrieval

Let rλ(Ω,Ω0) and )( 0
hem ΩλA  be the atmospherically

corrected hemispherical directional reflectance factor (HDRF)
and bihemispherical reflectance (BHR). We follow the
definitions given by Diner et al. [1998a], which are also used
in section 4. Note that both of these variables depend on the
wavelength λ and the direction Ω0 of direct solar radiance,
soil reflectance properties, and incident (direct and diffuse)
radiance. The HDRF also depends on view direction Ω. In
order to quantify a proportion between the direct and the
diffuse components of the incoming radiation, we use the
ratio fdir of direct radiation to the total (direct and diffuse)
radiation incident on the canopy. If fdir=1, the HDRF and BHR
become the bidirectional reflectance factor (BRF) and
directional hemispherical reflectance (DHR), respectively.
Therefore the symbols rλ(Ω,Ω0) and )( 0

hem ΩλA  will denote,
depending on the value of fdir, the HDRF and BHR or the BRF
and DHR. For each pixel the MISR instrument provides the
atmospherically corrected HDRF, BHR, BRF, and DHR in
nine view directions and at four spectral bands [Diner et al.,
1998a]. This information is the input to our LAI/FPAR
retrieval algorithm which we express in the vector-matrix
form as
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Here λ1=446 nm, λ2=558 nm, λ3=672 nm, and λ4=866 nm are
the centers of the MISR spectral bands; Ωi, i=1, 2, … , 9 are
unit view direction vectors. We will use rλ(Ω,Ω0), )( 0

hem ΩλA ,
r (Ω0), and A

&
hem(Ω0) to denote modeled canopy reflectances

and r~ λ(Ω,Ω0), )( 0
~hem ΩλA , r~ (Ω0), and A

&~ hem(Ω0) to denote
observations of these variables.

The modeled canopy reflectances depend on the model
parameters. In our algorithm we use a vegetation land cover
classification parameterized in terms of variables used in
photon transport theory [Myneni et al., 1997]. It distinguishes
six biome types, each representing a pattern of the architecture
of an individual tree (leaf normal orientation; stem-trunk-
branch area fractions; leaf and crown size) and the entire
canopy (trunk distribution, topography), as well as patterns of
spectral reflectance and transmittance of vegetation elements.
The soil and/or understory type are also characteristics of the
biome which can vary continuously within given biome-
dependent ranges. The distribution of leaves is described by
the three-dimensional leaf area density distribution function
which can also depend on some continuous parameters
(section 5). Therefore LAI may not be in the list p of model
parameters directly. However, LAI can be obtained when
model parameter values in the parameter list p are known; that
is, LAI is a function of p: LAI= l(p). The function l is assumed
known. Thus the model parameter list p contains one discrete
variable (biome type) which can take on six values only,
continuous variables (the soil and/or understory type), and
some continuous parameters determining the leaf area density
distribution function. A detailed description of canopy
parameterization is presented by Knyazikhin et al. [this issue].
The model parameters are said to be a canopy realization if
values of model variables in the parameter list are specified.
We denote by P a set of all possible canopy realizations and
will use p to denote a canopy realization. The set P is the sum
of six subsets,

�
6

1bio

bio

=

= PP ,

each representing a biome specific set of canopy realizations.
Let Dr⊂R4×9 and DA⊂R4 be the space of all possible values of
canopy reflectances obtained by running p over the set P; that
is,

{ }PppADA ∈Ω= :),( 0
hem
&

,  { }PpprDr ∈Ω= :),( 0 .  (3)



KNYAZIKHIN ET AL.: ESTIMATION OF LAI AND FPAR FROM MISR DATA

32241

Here we proceed with the suggestion that the sets DA and Dr

represent all possible observations of canopy reflectances; that
is, any A

&~ hem(Ω0) and r~ (Ω0) are elements of DA and Dr,
respectively. It should be noted, however, that this suggestion
may be violated in real situations.

In reality any model can simulate a process to within a
certain degree of accuracy only. Also, measurements cannot
be carried out ideally. It means that the models predict
domains OA⊂DA and Or⊂Dr around A

&
hem(Ω0) and r (Ω0) to

which the “true values” belong. The same is valid for
measured quantities; that is, we can only point out
neighborhoods OA and Or around A

&~ hem(Ω0) and r~ (Ω0) to
which the “true values” belong. The domains OA and Or are
uncertainties in measurements and simulations: any element
from these domains can be true values. We define
neighborhoods OA and Or about measured reflectances
A
&~ hem(Ω0) and r~ (Ω0) as [Diner et al., 1998a]
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Here νA(l)=1 if the BHR (or DHR) at wavelength λl exists and
0 otherwise; νr(l,j) takes on the value 1 if the HDRF (or BRF)
at wavelength λl and in scattering direction Ωj exists and 0
otherwise; σA and σr are uncertainties in the BHR (or DHR)
and HDRF (or BRF) retrievals and hr and hA some configur-
able threshold values [Diner et al, 1998a]. Thus modeled
quantities are defined to belong to a neighborhood around the
measured values such that a model which differs from the
retrieved BHR (or DHR) and HDRF (or BRF) values by an
amount equivalent to or less than the retrieval uncertainty will
result in values ∆A and ∆r of the order of unity.

Any canopy realization p∈P for which rOr ∈Ω )( 0  and
A
& hem(Ω0)∈OA must be considered a candidate for a true p. Let

us introduce sets of candidates for the solution as follows:

{ }AAA OALplPpPOLQ ∈Ω<∈= )( and)(:);,( 0
hem

biobio

&
,

{ }rrr OrLplPpPOLQ ∈Ω<∈= )(and)(:);,( 0biobio .

These sets are subsets of Pbio and contain such p from Pbio for
which the leaf area index LAI=l(p) is less than a given value L
from the interval [LAImin(bio), LAImax(bio)] and rOr ∈Ω )( 0 ,
A
&

hem(Ω0)∈OA. Here

{ }biomin :)(inf)bio(LAI Pppl ∈= ,

{ }biomax :)(sup)bio(LAI Pppl ∈= .

The sets QA(LAI max,OA;Pbio) and Qr(LAI max,Or;Pbio) contain
all p∈Pbio for which a canopy radiation model generates
output comparable with measured data. In terms of these
notations we formulate the inverse problem as follows: given
atmospherically corrected canopy reflectances A

&~ hem(Ω0),
r~ (Ω0) and their uncertainties OA, Or find all p∈ Pbio for which

)( 0
hem ΩA
&

∈OA  ,                              (6)

)( 0Ωr ∈Or  .                                 (7)

The algorithm is designed to utilize all the available informa-
tion of the observations by means of a two-step process. The
first step involves a comparison of the retrieved spectral hemi-
spherically integrated reflectances with those evaluated from
the model, i.e., solution of (6). Only those p which satisfy this
test are subject to the second step, which is a comparison of
their directional reflectances at the MISR angles to the retrie-
ved spectral directional reflectances, i.e.,the solution of (7).

In order to quantify solutions of (6) and (7) we introduce
measures (distribution functions) defined on the set Pbio as
follows: The subset Pbio is represented as a sum of
nonintersected subsets

jkPPPP jk

N
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Let NA(L;Pbio) and Nr,A(L;Pbio) be numbers of subsets Pbio,k

containing at least one element from the set QA(L,OA;Pbio) and
QA,r(L)=QA(L,OA;Pbio)∩Qr(L,Or;Pbio), respectively. As meas-
ures of QA(L,OA;Pbio) and Qr,A(L), we introduce biome-specific
functions FA,bio(L) and Fr,A,bio(L) as
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A mathematical description of the convergence process is
presented in the Appendix. Intuitively, the subset Pbio,k

specifies a set of canopy realizations whose range of variation
is “sufficiently small.” NA(LAI max;Pbio) and Nr,A(LAI max;Pbio)
are total number of solutions of (6) and (7); NA(L;Pbio) and
Nr,A(L;Pbio) are the number of these solutions when LAI=l(p)
is less then a given value L in the interval [LAImin, LAImax].
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The functions (9) and (10) are the LAI conditional distribution
functions provided p∈Pbio, and validity of (6) and (7),
respectively. Note that the functions (9) and (10) depend on L
and neighborhoods OA and Or. The values

∫=
max

min
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LAI

bio,bio, )(ldFlL AA  ,                      (11)
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LAI

bio,,bio,, )(ldFlL ArAr                       (12)

are taken as solutions of (6) and (7), and the values
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2

bio,, )(ldFlLd ArArAr            (14)

are taken as the characteristics of the solution accuracy. If (6)
and (7) have no solutions (i.e., F=0), we assign a default value
to (13) and (14). We propose to archive (11), (12), (13), and
(14) for all six biomes for diagnostic purposes.

We note some properties of the functions FA,bio and Fr,A,bio

which help to explain the definition of the solution (Appen-
dix). It follows directly from definitions (9) and (10) that if
the function l(p) is constant, say l(p)≡L*, when
p∈QA(LAI max,OA;Pbio) and p∈Qr(LAI max,OA,r;Pbio), then Lr,bio

and Lr,A,bio coincide with L*. This allows the use of three-di-
mensional canopy radiation models for which LAI is usually
not in the model parameter list. In this case, canopy realiza-
tions can vary considerably, while LAI remains unchanged.
This property shows that (11) and (12) are sensitive to LAI
but not to the situations generating the value of LAI. It fol-
lows from this that if the inverse problem has a unique solu-
tion for given set of measurements, then (11) and (12) coin-
cide with this solution. If model parameters from
QA(LAI max,OA;Pbio) and Qr(LAI max,OA,r;Pbio) can generate sev-
eral values of LAI, (11) and (12) provide a weighted mean in
accordance with the frequency of occurrence of a given value
of LAI. The accuracy of a solution cannot be improved if no
additional information is available. These properties provide
convergence of the algorithm; that is, the more the measured
information is available and the more accurate this informa-
tion is, the more reliable and accurate the algorithm output
will be.

Figures 1-4 illustrate various aspects of the function (9)
and retrieval results for biome 1 (grasses and cereal crops) for
40 different neighborhoods OA. This biome type is represented
by five parameters in the algorithm [Diner et al., 1998b],
which include the “effective” ground reflectances ρi=ρq,eff(λi)
(section 6) in the MISR bands λi, i=1, 2, 3, 4, and LAI; that is,
p=(ρ1, ρ2, ρ3, ρ4, LAI). The effective ground reflection was a

linear function with respect to wavelength in this example;
that is, ρq,eff(λi)=s(λ1-λ)+ρ1. The slope s, effective ground
reflectance in the first MISR band ρ1 and LAI, can vary con-
tinuously within given biome-dependent intervals [ρmin,ρmax],
[smin,smax] and [LAImin, LAImax]. Thus the set Pbio, bio=1, is
defined in our example as

.}
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maxminmaxmin
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sss
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The function l takes the form l(p)=LAI in this case. We
choose 40 elements,

pk=(0.025, 1.184×10-4, LAIk), LAIk=0.1 + (k-1)×0.25,   (15)

k=1, 2, … , 40,

from the set Pbio. For each soil/LAI pattern pk, we estimated
DHR for the four MISR bands, which were taken as A

&~  (Ω0).
The uncertainties in (5) were simulated as
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where ε is a variable in the calculations; that is, these uncer-
tainties can be interpreted as the mean retrieved uncertainty. If
the values )( 0

hem ΩλA , λ=λ1, λ2, λ3, λ4, are approximately of
the same order, the value of the merit function (5) using un-
certainties of the individual )( 0

hem ΩλA  is close to that when
using (16). In the general case, the merit function using (16)
describes the closeness between measured and simulated val-
ues worse than the ones using the individual uncertainties,
i.e., neighborhoods OA determined by the merit function (5)
with (16) are broader than the ones accounting for individual
uncertainties. One object of our study was to analyze the be-
havior of the parameter distribution function in situations
worse than what may be realized. The parameters used in this
study are as follows: the polar angle of the unit direction Ω0

was 450; ρmin=0.025, ρmax=0.070, smin=1.184×10-4,
smax=1.896×10-4; LAI min=0.1; LAImax=9.85; fdir=1, ε=0.20, and
hA=1. The number N in (8) was 1000, which was large enough
to approximate the parameter distribution functions (9) and
(10) sufficiently well.

The total number, NA(LAI max;Pbio), of solutions of (6) for
the 40 patterns of neighborhoods OA are plotted in Figure 1.
The neighborhoods are sorted with respect to values l(pk)
where pk is the soil/LAI pattern (15) for which OA was simu-
lated. Values l(pk) are shown on the horizontal axis. Figure 2
presents the numbers of different values of l(p) when p ran
over the set QA(LAI max,OA;Pbio), i.e., numbers of different val-
ues of LAI satisfying (6). Figure 3 demonstrates the functions
∆FA,bio(L)= FA,bio(L+0.25)-FA,bio(L) for five different patterns of
OA. One can discern two types of shapes for ∆FA,bio. The first
one localizes values of LAI sufficiently well (curves 0.1, 1, 2,
and 3). They correspond to neighborhoods OA for which
l(p)≤3. The curve 5 shows that the set of p for which model
results are nearly equivalent to the measurements is rather big.
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Figure. 1.  Total number of solutions for 40 patterns of
neighborhoods OA. The horizontal axis shows the values l(pk),
where pk is the soil/leaf area index (LAI) pattern for which OA

was simulated.
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the inverse problem for 40 patterns of neighborhoods OA.
Vertical axis on the left side: 1, exact solution; 2, retrieved
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curve_2|/curve_1; 4, 100⋅dA,bio/curve_1.

We will quantify this situation in section 3. Figure 4 contains
two plots; the first one with the vertical axis on the left side
demonstrates exact (curve 1) and retrieved (curve 2) values of
LAI for our patterns of OA. The meaning of the horizontal axis
is the same as in Figure 1. The second plot with the vertical
axis on the right presents values δA,bio=100⋅dA,bio/LA,bio (curve
3), and δLAI=100⋅|LAIbio-LA,bio|/LAIbio (curve 4) for 40 patterns
of OA. Here LAIbio= l(pk) is the value of leaf area index for
which OA was simulated and LA,bio is the value obtained from
(11). The value δA,bio mainly varied between 11% and 28%,
even in cases when the algorithm retrieves LAI accurately
(compare curves 3 and 4). The range of variations in δA,bio,
however, is comparable to the uncertainty of OA (recall that in
our example this set includes elements that differ from a given
vectorA

&~ hem(Ω0), on an average, by 20%). Therefore (13) can
be taken as the characteristic of the inversion accuracy.
However, this value is slightly sensitive to the two cases when
the function (9) localizes LAI values (Figure 3, curves 0.1, 1,
2, and 3) and when such localization does not take place
(curve 5). Therefore one needs an additional characteristic
that distinguishes these two conditions. We must also pay
attention to the case when the accuracy of the retrieved LAI
exceeds the uncertainty of OA. The neighborhood with
l(pk)=0.1 demonstrates such an example. In this case, N=1000
in (8) was not big enough to adequately represent the set of
possible observations. There were vectors 4RA∈

&
 which are

close to the simulated A
&

hem(Ω0), AA
&&

≈ hem(Ω0) and which
were not elements of DA.

3. Saturation Domain

Calculations presented in section 2 indicate that there may
be “small” neighborhoods OA and Or in DA and Dr which can
be generated by a rather “wide” set of the canopy realizations.
Curve 5 in Figure 3 illustrates such a condition: any p satisfy-

∆∆ F
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ing l(p)≥3.5 with equal probability can be a solution of (6). In
our study, similar behavior was observed for all patterns OA

corresponding to l(pk)≥5. The aim of this section is to quantify
these situations.

Let us consider the set Sbio(L
*,L) defined as

{ }max
*

bio
*

bio LAI;)(:),( ≤<≤∈= LLplLPpLLS .  (17)

This set does not depend on canopy reflectances. A measured
A
&~ hem(Ω0) is defined to belong to the saturation domain

DS,A⊆DA, and a value, L*
A∈[LAI min, LAImax], is a saturation

point if

{ }
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This equality shows that for given OA, a canopy radiation
model is insensitive to the canopy realizations from the set
Sbio(L

*
A,LAI max). All A

&~ hem(Ω0) satisfying the condition (18)
constitute the saturation domain DS,A. Figure 3 demonstrates
one example of an element from the saturation domain and
saturation point: the neighborhood OA corresponding to p21

(see (15)) belongs to the saturation domain, and any value of
LAI from 3.6 to 9.85 can be a solution with equal probability.
The point L=3.6 is the saturation point. Similarly, a saturation
domain, DS,r⊆Dr and saturation point, L*

r∈[LAI min,LAI max], for
the HDRF and BRF can be introduced.

In the algorithm, the leaf area distribution function is
parameterized in terms of ground cover g and mean leaf area
index L of an individual tree (section 5). The ranges

gmin ≤ g ≤ gmax,       Lmin ≤ L ≤ Lmax

of their possible variation depend on the biome type and are
assumed to be known [Knyazikhin et al., this issue]. Thus the
function l(p) has the form l(p)=gL, and

LAI min= gminLmin,         LAImax= gmaxLmax  .           (19)

We note that in the cases of biome 1 (grasses and cereal
crops), vegetation is idealized as a horizontally homogeneous
medium [Knyazikhin et al., this issue]. For this biome,
gmin=gmax=1. Analogous to (9) and (10), a solution distribution
function for the saturation domain can be introduced as

)LAI,(

),(
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S

S

N ∞→
=Φ  ,

where N is defined by (8) and NS(L
*,L) is the number of

subsets Pbio,k containing at least one element from the set (17).
Accounting for l(p)=gL, we get
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ψ
ψ=Φ  ,                    (20)

where the function ψ(L*,L) takes on the value 0 if L<L*, and
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if L ≥ LAI max. Note that the function (20) is expressed in the
form of the Stieltjes integral, where
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If Lmin<Lmax and gmin<gmax, then the Stieltjes integral coincides
with the classical integral, and dHL(l)=dl, dHG(g)=dg.
However, if Lmin=Lmax and/or gmin=gmax, the classical integral
gives a value of 0, while the Stieltjes integral provides the
correct value. Thus (20) specifies the distribution of LAI in
the set (17) in our algorithm. Note that if LAI and model
parameters are related in another manner, function (20) may
take another suitable form.

If A
&~ hem(Ω0) and r~ (Ω0) belong to the saturation domain,

then L*
A  and L*

r exist, such that

),()( *
bio, LLLF AA Φ=  and ),()( *

bio,, LLLF rAr Φ=

for all L from [LAImin, LAI max]. In this case, the solutions (11)
and (12) and their variance coefficients (13) and (14) can be
expressed as

)( *
1bio, AA LsL = ,   )()( *2

1
*

2
2

bio, AAA LsLsd −=  ,    (21)

)( *
1bio,, rAr LsL = ,   )()( *2

1
*

2
2

bio,, rrAr LsLsd −=  ,   (22)

where

∫ Φ=
max

min

LAI

LAI

** ),()( lLdlLs k
k  ,  k=1,2.

The functions s1 and s2 are known and determined by canopy
characteristics   only  and   are  independent  of  the  measured
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Figure 5.  Saturation curves for six biomes. If the measured
canopy reflectance belongs to the saturation domain, then the
point (LAI, d) lies on the saturation curve. Here LAI is the
retrieved value of LAI and d is its dispersion.

quantities. The set of points [s1(L
*), √(s2(L

*)-s1
2
 (L

*))] obtained
by running L* over [LAImin, LAImax] determines a curve which
is termed a saturation curve. Figure 5 demonstrates saturation
curves for six biomes which correspond to canopy
parameterization introduced by [Myneni et al., 1997;
Knyazikhin et al., this issue]. These relationships allow us to
formulate a necessary condition for the measured reflectances
belonging to the saturation domain as follows: If
A
&~ hem(Ω0)∈DS,A and r~ (Ω0)∈DS,r then the points [LA,bio, dA,bio]

and [Lr,A,bio, dr,A,bio] belong to saturation curves, or what
amounts to the same thing, solutions of the equations
s1(LA)=LA,bio, s2(Ld)-s1

2(Ld)=d2
A,bio and s1(Lr)=Lr,A,bio, s2(Lr,d)-

s1
2(Lr,d)=d2

r,A,bio satisfy the equalities LA=Ld and Lr=Lr,d. Here
the-right hand sides of these equations are evaluated during
the execution of the algorithm. The left-hand sides are known
functions of one variable.

This criterion takes a simple form in the case of biome 1.
It follows from (20) and gmin= gmax=1 that the solution
distribution function for the saturation domain in these
biomes is
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Equation (21) is reduced to
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and (22) can be simplified to a similar expression, with L*
A

replaced by L*
r. After obvious transformations, one can

express the saturation criterion for biomes 1 as follows: If
A
&~ hem(Ω0)∈DS,A and r~ (Ω0)∈DS,r, then

maxbio,,bio,,

maxbio,bio,

LAI3

and/or   LAI3  

=+

=+

ArAr

AA

dL

dL
            (23)

where LA,bio, dA,bio, Lr,A,bio, and dr,A,bio are evaluated from (11),
(12), (13), and (14). Thus after the evaluation of LAIs and
their variances, condition (23) is checked. We archive -dA,bio

and -dr,A,bio if (23) is satisfied to a given accuracy. Inclusion of
the minus sign means that a solution LAI was found, but the
value probably belongs to the saturation domain and any value
of LAI from [2⋅LAI - LAI max,LAI max] must be considered as a
true solution with equal probability.

Other biome types do not allow for the formulation of the
saturation criteria in a such simple form. Therefore we store
saturation curves for all biomes in the look-up table. After
evaluation of LAIs from (11) and (12) and their variances
from (13) and (14), conditions m(dA,bio,LA,bio)=0 and
m(dr,A,bio,Lr,A,bio)=0 are checked. Here
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min),(

2*2
1

*
2
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L
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We archive -dA,bio and -dr,A,bio if these relationships are fulfilled
to a given accuracy.

4. Radiation Transport in a Canopy

The sets P, DA, and Dr, which represent all possible
canopy realizations and corresponding observation of canopy
reflectances, are static tables in our algorithm, i.e., look-up
table termed CART (canopy architecture radiative transfer)
file in the MISR Algorithm Theoretical Basis Document
[Diner et al., 1998b]. The algorithm interacts only with
elements of these sets. This provides independence from a
particular canopy radiation model. A question then arises as to
how the CART file has to be filled. In answering this
question, we aimed (1) to minimize the size of the CART file
and (2) to minimize the dependence of the CART file on a
particular canopy radiation model. The aim of this section is
to give a precise definition of elements of DA and Dr.

The domain V in which a plant canopy is located is
parallelepiped of dimension XS=YS=1.1 km and biome-
dependent height ZS. The domain V can contain subdomains
(or fine cells) whose size depends on the heterogeneity of the
biome type. The top δVt, bottom δVb, and lateral δVl surfaces
of the parallelepiped form the canopy boundary,
δV=δVt+δVb+δVl. The function characterizing the radiation
field is the monochromatic radiance Lλ which is a function of
wavelength λ, location r= (x,y,z), and direction Ω. In the
absence of polarization, frequency shifting interactions, and
emission processes within the canopy, the monochromatic
radiance is given by the steady state radiative transfer
equation,

Biome 1Biome 5 and 6

Biome 3

Biome 2

Biome 4

Retrieved LAI

D
is

pe
rs

io
n
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where Ω•∇ is the derivative at r along the direction Ω; uL (in
m2/m3) is the leaf area density distribution function (leaf area
per unit volume); G (dimensionless) is the mean projection of
leaf normals at r on to a plane perpendicular to the direction
Ω. A precise description of these variables can be found in the
works of Ross [1981] and Myneni [1991]. Here we follow the
formulation of [Myneni, 1991] for the above mentioned
variables. Note that there is a term Fλ in this equation which
accounts for the hot spot effect: a rather wide family of
canopy radiation models are described by an equation of this
form [Knyazikhin et al., this issue]. The choice of Fλ depends
on the model used to simulate the hot spot effect, and it is
assumed to be known. We should note that Fλ may take on
negative values. Thus (25) is a closed mathematical equation
(not a “physical equation”) and is used as the theoretical basis
of an algorithm for LAI/FPAR. This type of equation also
arises in reactor problems, and so we will closely follow some
methods from this discipline [Vladimirov, 1963;
Germogenova, 1986].

Equation (25) alone does not provide a full description of
the transport process. It is necessary to specify the incident
radiance at the canopy boundary δV, i.e., specification of the
boundary conditions. Because the plant canopy is adjacent to
the atmosphere, neighboring canopies and the soil and/or
understory, all which have different reflection properties, the
following boundary conditions will be used to describe the
incoming radiation [Ross et al., 1992]:
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rb∈δVb ,  Ω•nb < 0 ,

where Ltop
d,λ and Ltop

m,λ are the diffuse and monodirectional
components of solar radiation incident on the top surface of
the canopy boundary δVt; Ω0 is the direction of the
monodirectional solar component; δ is the Dirac delta-
function; Llat

m,λ is the intensity of the monodirectional solar
radiation arriving at a point r l∈δVl along Ω0 without
experiencing an interaction with the neighboring canopies;
Llat

d,λ is the diffuse radiation penetrating through the lateral
surface δVl; Rl,λ and Rb,λ (in sr-1) are the bidirectional

reflectance factors of the lateral and the bottom surfaces,
respectively; and nt, nl, and nb are the outward normals at
points r t∈δVt, r l∈δVl, and rb∈δVb, respectively. A solution of
the boundary value problem, expressed by (25)-(28), describes
the radiation regime in a plant canopy and, as a consequence,
reflectance properties of the vegetation canopy.

The hemispherical-directional reflectance factor for
nonisotropic incident radiation, or HDRF, is defined as the
ratio of the radiance leaving the top of the plant canopy
Lλ(r t,Ω), Ω•nt>0 to the radiance reflected from an ideal Lam-
bertian target into the same beam geometry and illuminated
under identical atmospheric conditions [Diner et al., 1998a]
which can be expressed by a solution of (25)-(28) as
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The bihemispherical reflectance for nonisotropic incident
radiation, or BHR, is defined as ratio of the radiant exitance to
the incident radiant [Diner et al., 1998a]; that is,
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The HDRF and BRF depend on the ratio fdir of direct
irradiance on the top of the plant canopy to the total incident
irradiance. If fdir=1, the HDRF and BHR become the
bidirectional reflectance factor (BRF) and the directional
hemispherical reflectance (DHR), respectively. Here rλ(Ω,Ω0)
and )( 0

hem ΩλA  denote the HDRF and BHR (fdir≠1) or the BRF
and DHR (fdir=1). The MISR instrument provides this ratio,
and so, it is input to the algorithm. Equations (29) and (30)
depend on canopy realization p∈P. Evaluating (29) and (30)
for all p∈P, one obtains the sets Dr and DA, which contain all
possible values of the HDRF and BHR.

5. Assumptions: Radiation Transfer Process

Theoretically, the sets DA and Dr can be generated offline
by solving the transport equation at four MISR spectral bands
for various combination of Sun-sensor geometry and all
canopy realizations from the set P. However, one can realize
it only if the sets DA and Dr can be reprocessed with minimum
effort. The time required to precompute these sets is a direct
function of the number of spectral channels used, combina-
tions of Sun-sensor geometry, and elements in the set P. For
example, the generation of the set Dr using this direct method
takes approximately 192 computer hours of medium perform-
ance IBM RS/6000 RISC workstation [Running et al., 1996].
The size of Dr containing BRFs for two spectral bands and for
all six biomes is about 63 megabites. The inclusion of more
spectral bands and view directions leads to significant de-
mands on the core memory required to execute this algorithm.
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It makes this approach impractical in the case of MISR
instrument. The aim of this section and section 6 is to formu-
late some assumptions allowing for a significant reduction in
the size of DA and Dr.

5.1. Conservativity

A radiative transfer model is defined to be conservative if
the law of energy conservation holds true for any elementary
volume [Bass et al., 1986]. Within a conservative model,
radiation absorbed, transmitted, and reflected by the canopy is
always equal to radiation incident on the canopy. A rather
wide family of canopy radiation models [Kuusk, 1985;
Marshak, 1989; Pinty et al., 1989; Li and Strahler, 1992;
Myneni et al., 1995; Pinty and Verstraete, 1998] which
account for the hot spot are equivalent to the solution of the
above boundary value problem in which the function Fλ has
the following form [Knyazikhin et al., this issue]:

Fλ(r,Ω) = [σ(r,Ω) - σH(r,Ω,Ω0)]LH,λ(r,Ω).

Here LH,λ is the upwardly directed once-scattered radiance
produced by the hot spot, and σH is a model-dependent total
interaction cross section, introduced in canopy radiation
models to account for the hot spot effect and to evaluate LH,λ.
The total interaction cross section σ is used to evaluate the
attenuation of both direct solar radiance and multiply scattered
radiance. Because Fλ can take on negative values, it has no
physical meaning in terms of energy conservation. These
types of canopy radiation models are mainly used to fit
simulated BRFs to measured BRFs. However, the ability of a
model to simulate canopy reflection is not a sufficient
requisite for the solution of the inverse problem. Canopy
radiation models must also satisfy the law of energy
conservation and provide the correct proportions of canopy
absorptance, transmittance, and reflectance. Because the
retrieval algorithm is based on energy conservation, the
following “minimum” requirement, which the canopy
radiation models must satisfy in order to be useful for inverse
problems, is formulated:
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λ rFddr
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,                        (31)

for any λ. This equation does not allow a nonphysical source
Fλ(r,Ω) to influence the canopy radiative energy balance.
Currently, we use a model for σH proposed by Myneni et al.
[1995]. A nonconservative canopy radiation model must be
corrected, as described in section 8.

5.2. Leaf Area Index

The leaf area index LAI is defined as
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If the vegetation canopy consists of Nc individual trees, LAI
can be expressed as
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where Sk is the crown projection of the kth tree onto the
ground; gk=Sk/(XSYS) and LAIk is the leaf area index of an
individual tree. Thus LAI is LAI = gLAI 0, where ∑ == c
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k kgg

is the ground cover, and
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is the mean LAI of a single tree. The spatial distribution of
trees in the stand is a characteristic of the biome type and is
assumed to be random. For each biome type, the leaf area
density distribution function is parameterized in terms of the
ground cover and mean leaf area index of an individual tree,
each varying within given biome-specific intervals [gmin, gmax]
and [Lmin, Lmax], respectively. Thus the vegetation canopy is
represented as a domain V consisting of identical trees in
order to numerically evaluate the transport equation.

5.3. Anisotropy of Incoming Diffuse Radiation

A model of clear-sky radiance proposed by Pokrowski
[1929] is used to approximate the ratio between the angular
distribution of incoming diffuse radiation and its flux:
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Here Ω∼(µ,ϕ) and µ<0. We assume that this ratio does not
depend on wavelength. The diffuse radiation Ltop

d,λ does not
depend on the top boundary space point r t∈δVt. This allows
the parameterization of the incoming radiation field in terms
of fdir and the total (diffuse and direct) incident flux.

5.4. Boundary Conditions for Lateral Surface

The radiation penetrating through the lateral sides of the
canopy depends on the neighboring environment. Its influence
on the radiation field within the canopy is especially
pronounced near the lateral canopy boundary. Therefore
inaccuracies in the lateral boundary conditions may cause
distortions in the simulated radiation field within the domain
V. These distortions, however, decrease with distance from
this boundary toward the center of the domain. The size of the
“distorted area“ depends on the adjoining vegetation,
atmospheric conditions, and model resolution [Kranigk,
1996]. In particular, it has been shown that these lateral
effects can be neglected when the radiation regime is analyzed
in a rather extended canopy, as is the case considering the
rather large MISR pixel (~1.1 km). Therefore we idealize our
canopy as a horizontally infinite region. We will use a
“vacuum” boundary condition for the lateral surface to
numerically evaluate a solution for the case of a horizontally
infinite domain,
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Lλ(r l,Ω) = 0,       r l∈δVl,       Ω • nl < 0 .           (32)

5.5. Optical Properties of Foliage

The leaf-scattering phase function γL,λ is assumed to be bi-
Lambertian [Ross and Nilson, 1968]; that is, a fraction of the
energy intercepted by the foliage element is reflected or
transmitted in a cosine distribution about the leaf normal,







>Ω•Ω′Ω•ΩΩ•Ω

<Ω•Ω′Ω•ΩΩ•Ω
=

Ω→Ω′Ω

−

−

.0))((,)(

,0))((,)(

),,(

LLL,D
1

LLL,D
1

L,L

rt

rr

r

λ

λ

λ

π

π

γ

Here rD,λ and tD,λ are the spectral reflectance and transmit-
tance, respectively, of the leaf element. Figure 6 shows an
example of the sensitivity of the reflection coefficient rD,λ for
the 1-year shoots (Picea abies (L) karst) on its location in
space. In spite of this spatial variation the shapes of spectral
reflectance and transmittance are rather stable. For example,
compared with the mean, the deviation is, on average, about
12-15%, which does not exceed the accuracy of the canopy
radiation model [Knyazikhin et al., 1997]. Therefore the
spatial variation of foliage optical properties can be neglected.
Thus the algorithm can be parameterized in terms of spectral
leaf albedo, ω(λ)=rD,λ+tD,λ. For each biome the mean spectral
leaf albedo is stored in the CART file. The ratio rD,λ/ω(λ) is
also assumed to be independent of wavelength, in any given
biome type. We note that the validity of the assumptions 5.3-
5.5 was verified by comparing simulation results with field
measurements [Knyazikhin et al., 1997].

6. Assumptions: Ground Reflectance and
Anisotropy

To parameterize the contribution of the surface underneath
the canopy (soil or/and understory) to the canopy radiation
regime, an effective ground reflectance is introduced, namely,
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Here Lλ is the solution of the boundary value problem for the
transport equation; rb∈δVb and Ω•nb<0. The function q is a
configurable function used to better account for features of
biomes [Knyazikhin et al., this issue], and it satisfies the
following condition:

∫
−

=Ω′Ω′
π2

1)( dq .

The effective ground reflectance depends on the canopy
structure and the incident radiation field. It follows from the
definition that the variation of ρq,eff satisfies the following ine-
quality:
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Figure 6.  Spectral reflectance of 1-year-old spruce shoots.
Three characteristics of the 1-year shoots were chosen to
examine the spatial variations of foliage spectral properties,
age of needles on the 1-year shoot; position within the tree
crown (top, two middle, and bottom) and geographical
orientation with respect to the tree stem (south, north, east and
west).
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that is, the range of variation depends on the integrated
bidirectional reflectance factor of the ground surface only. For
each biome type, the bidirectional reflectance factor of the
ground surface Rb,λ and the effective ground reflectance are
assumed to be horizontally homogeneous; that is, they do not
depend on the spatial point rb. Effective ground reflectances at
the MISR spectral bands are elements of the canopy
realization p∈P. Various patterns of the spectral ground
reflectance evaluated from the soil reflectance model of
Jacquemoud et al. [1992] are included in the present version
of the CART file.

To account for the anisotropy of the ground surface, we
introduce an effective ground anisotropy Sq,
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rb ∈ δVb ,       Ω•nb < 0.

The effective ground anisotropy Sq depends on the canopy
structure as well as the incoming radiation field. We note the
following property:

∫
+

=ΩΩ
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µ
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b 1),( drSq  ;                       (34)

that is, the integral (34) depends neither on spatial nor on
spectral variables. For each biome type, the effective ground
anisotropy is assumed to be wavelength independent. A
detailed specification of this variable is presented by
Knyazikhin et al. [this issue]. The ground anisotropy is used to
precompute some solutions of the transport equation and thus
is not stored in the CART file.

7. Basic Algorithm Equations

Under the assumptions listed above, the solution of the
boundary value problem for the transport equation can be
expressed as [Knyazikhin et al., this issue]
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Here Lbs,λ is the solution of the “black-soil problem” which
satisfies (25) with the boundary conditions expressed by (26),
(32), and

Lbs,λ(rb,Ω) = 0,      rb∈δVb,      Ω•nb < 0 .

The function Lq,λ satisfies (25) with Fλ=0, and the
boundary conditions (32) and

Lq,λ(r t,Ω) = 0,      r t∈δVt,      Ω•nt < 0 ,

Lq,λ(rb,Ω) = Sq(rb,Ω),      rb∈δVb,      Ω•nb < 0 .

It describes the radiation regime in the plant canopy generated
by an anisotropic, heterogeneous source Sq defined by (33)
located at the bottom of the canopy. We term the problem of
finding Lq,λ the “S problem.” Further,
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where the angle brackets denote the mean over the ground
surface. Note that we can replace the approximate equality in
(35) by an exact equality if a one-dimensional canopy
radiation model is used to evaluate the radiative regime in
plant canopy. It follows from (35), (29), and (30) that the
BHR, )( 0

hem ΩλA , the HDRF, rλ, and the fraction of radiation
absorbed by the vegetation ahem

λ at wavelength λ can be
expressed as
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where r hem
bs,λ, rbs,λ, and ahem

bs,λ are the BHR, HDRF, and the
fraction of radiation absorbed by the vegetation, respectively,
when the effective ground reflectance is zero. Here
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is the weighted canopy transmittance,
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is the transmittance resulting from the anisotropic source Sq

located underneath the canopy,
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),()( t,, Ω=Ω rLqq λλτ

is the radiance generated by Sq which leaves the plant canopy
at the top, and aq,λ is the fraction of radiation generated by Sq

and absorbed by the vegetation. The radiation reflected,
transmitted, and absorbed by the vegetation must be related
via the law of energy conservation:
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Note that all variables in (36) and (37) are mean values
averaged over the top surface of the canopy.

It follows from (36) that
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This equation shows that the contribution of the canopy
ground surface to the canopy-leaving radiance is proportional
to the square of the canopy transmittance, and the factor of
proportionality depends on the effective ground reflectance. If
the right side is sufficiently small, we can neglect this
contribution.

We have expressed the solution of the transport problem
in terms of the effective ground reflectance, and solutions of
the “black-soil problem” and the “S problem.” The solution of
the “black-soil problem” depends on Sun-view geometry,
canopy architecture, and spectral properties of the leaves. The
"S problem" depends on the spectral properties of the leaves
and canopy structure only! These properties allow a
significant reduction in the size of the CART file because
there is no need to store the dependence of the exiting
radiation on ground reflection properties. Elements of Dr and
DA can be composed from precomputed solutions of the
"black-soil problem" and "S problem" and precomputed
values of the effective ground reflectance.

8. Conservativity As a Tool to Constrain
Retrieval

In spite of the diversity of canopy reflectance models,
their direct use in an inversion algorithm is ineffective. In the
case of forests, for example, the interaction of photons with
the rough and rather thin surface of tree crowns and with the
ground in between the crowns are the most important factors
causing the observed variation in the directional reflectance
distribution. These phenomena are rarely captured by many
canopy reflectance models. As a result, these models are only
slightly sensitive to the within-canopy radiation regime. This
assertion is based on the fact that a rather wide family of
canopy radiation models are solutions to (25), including
model-dependent nonphysical internal source Fλ [Knyazikhin

et al., this issue]. Within such a model the radiation absorbed,
transmitted, and reflected by the canopy is not equal to the
radiation incident on the canopy. The function Fλ is chosen
such that the model simulates the reflected radiance correctly;
that is, these models account for photon interactions within a
rather small domain of the vegetation canopy. On the other
hand, it is the within-canopy radiation regime that is sensitive
to the canopy structure and therefore to LAI. The within-
canopy radiation regime also determines the amount of solar
energy absorbed by the vegetation. Ignoring this
phenomenology in canopy radiation models leads to a large
number of nonphysical solutions when one inverts a canopy
reflectance model. It may even be that that the saturation
domain coincides with Dr and DA. Therefore (36) and (37)
must be transformed before they can be used in a retrieval
algorithm.

Let us introduce the required weights
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With this notation, (37) can be rewritten as
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and from (39) and (40) the canopy reflectances r hem
bs,λ and r q,λ

can be written as

hem
,bs

1,hem
,bs

hem
,bs 1 λλλ atr −−= ≡q  ,                     (45)

λλλ ,,, 1 qqq atr −−=  .                        (46)

Thus (44) is sensitive both to factors determining the
directional reflectance distribution of plant canopies (the
weight wbs,λ) and to the within-canopy radiation regime
( 1,hem

,bs

≡q

λt , hem
,bs λa , tq,λ, aq,λ). Equations (44)-(46) also allow the

formulation of a test for the “eligibility” of a canopy radiation
model to generate the CART. First the weight  wbs,λ  is
evaluated as a function of Sun-view geometry, wavelength,
and LAI by using a field-tested canopy reflectance model.
Then, with the same model, r hem

bs,λ and r q,λ are evaluated from
(45) and (46) and inserted into (42). A canopy radiation model
is “eligible” to generate the CART file if (42) is satisfied to
within a given accuracy for any Sun-view combination,
wavelength, and LAI. The requirement (31) is necessary to
satisfy this test. However, it is not a sufficient condition to
provide the correct proportion among canopy absorptance,
transmittance, and reflectance.
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We do not know of a canopy reflectance model which can
pass the above test. It is because there is no published model
thus far which satisfies the energy conservation law. Although
a conservative transport equation for a vegetation canopy has
not yet been formulated, one can derive some properties of the
solutions of this equation [Knyazikhin et al., this issue]. The
following properties of the canopy spectral absorptance and
transmittance [Knyazikhin et al., this issue] are used to correct
existing canopy radiation models: Let a(λ) and t(λ) be the
fraction of radiation absorbed and transmitted by the
vegetation at wavelength λ for either the “black-soil problem”
or the “S problem.” The following relationships are valid in
both cases:
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where γ0(λ)=ω(λ)[1-exp(-K)] is the unique positive eigenvalue
of the transport equation, rD is the spectral leaf reflectance,
and ω is the leaf albedo [Knyazikhin et al., this issue]. Note
that in the case of the “black-soil problem” these relationships
are valid for the radiation regime, which is the sum of the
radiation fields generated by the direct and diffuse
components of incident solar radiation. The coefficient K may
depend on canopy structure (i.e., biome type, ground cover,
etc.) and Sun position but not on wavelength or soil type. Its
specification depends on the parameter type (absorptance or
transmittance) and the type of transport problem (“black-soil”
or “S problem”). This coefficient, however, does not depend
on the type of the transport problem and Sun position when it
refers to canopy absorptance. In the case of canopy transmit-
tance it depends on the ratio rD/ω, which is assumed to be
wavelength independent (section 5.5). Thus given a and t at
wavelength λ0, we can evaluate these variables at any other
wavelength λ. These properties can be used to specify correct
values of canopy absorptance and transmittance. We introduce
the coefficients ptbs, ptq, and pa which are equal to [1-exp(-
K)], with the appropriate coefficient K for the transmittances
of the “black-soil problem,” the “S problem,” and the canopy
absorptance, respectively. Note that the eigenvalue γ0 depends
on values of spectral leaf albedo, which in turn depends on
wavelength. It allows us to parameterize the canopy
absorptance and transmittance in terms of canopy structure,
Sun position, and leaf albedo.

The coefficient pa, for LAI equal to lai, is the value of x
which minimizes the expression
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(49)

Here a is the canopy absorptance which is a function of leaf
albedo ω and leaf area index lai and is evaluated by solving

the transport equation. Value ω* is a reference leaf albedo
which is specified below. Note that LAI is parameterized in
terms of ground cover and mean leaf area index of an
individual tree; that is, lai=gL. Therefore we distinguish
between equal values of LAI corresponding to different values
of g and L in the algorithm.

In a similar fashion the coefficient ptbs or ptq is the value
of x which minimizes the expression
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Here tχ is the canopy transmittance for the “black-soil
problem” or the “S problem,” which is a function of leaf
albedo ω and leaf area index lai, and is evaluated by solving
the transport equation. The values ptbs and ptq for which ξt,bs

and ξt,q attain their minimum provide the best agreement to
(48) and to the energy conservation laws (45) and (46).

As a reference leaf albedo, we take such ω* which
minimizes the expression
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where LAImin and LAImax are defined by (19). From our
studies, optimum values of the reference leaf albedo for our
canopy radiation model are 0.1, 0.26 and 0.34. A canopy
radiation model is recognized as “eligible” if ξ(ω*) defined by
(51) is less then 0.001 (we achieved this value by using our
model). Note that there is no conflict with the energy
conservation law in the case of the “S problem.” We also note
that problems (49)-(51) have to be classified as ill-posed
problems, and so a special technique, for example, Tikhonov
and Arsenin [1986], is needed to resolve them.

It follows from (36) and (44) that the HDRF can be
represented as
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(52)

We use (36) and (52) with fdir=1 to build the functions (9) and
(10).
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Thus the BHR described by (36) and the HDRF described
by (52) can be expressed in terms of optical properties of a
leaf and the energy conservation law, as well as in terms of
solutions of the “black-soil problem” and the “S problem” at a
reference leaf albedo value of ω*. This facilitates comparison
of spectral values of the BHR or HDRF with spectral
properties of individual leaves, which is a rather stable
characteristic of a green leaf. It also can be interpreted as
“inclusion of additional information” into the algorithm, thus
allowing a significant reduction in the number of retrieved
solutions.

9. Description of FPAR Retrieval

It follows from (38) and (41) that the fractional amount of
incident photosynthetically active radiation (PAR) absorbed
by the vegetation canopy (FPAR) can be evaluated as
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The Qbs term describes the absorption within the canopy for
the case of a black ground, and Qq describes additional
absorption within the canopy due to the interaction between
the ground (soil or/and understory) and the canopy. Here
p∈Pbio; E0,λ is the solar irradiance spectrum known for all
wavelengths; ehem

λ is the normalized incident irradiance,
defined as the ratio of the radiant energy incident on the
surface to E0,λ [Diner et al., 1998a]. The normalized incident
irradiance and the BHR are provided by the MISR instrument
at three spectral bands within the PAR region. We assume a
piecewise linear variation in these variables over regions
[446nm, 558 nm], [558 nm, 672 nm], and constant over
regions [400 nm, 446 nm], [672 nm, 700 nm], i.e., letting Cλ
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where the subscripts 1, 2, and 3 denote the blue, green, and
red bands, respectively. Substituting (57) into (54), (55), and
(56) as well as accounting for (47), one can express E(Ω0),
Qbs, and Qq as a linear combination of ehem

λ and hem~
λA ehem

λ, λ=
λ1, λ2, λ3. Coefficients of the linear combinations are
precomputed and stored in the CART file. A detailed
description of a final expression for (53) is presented by Diner
et al. [1998a]. Note that the dependence of FPAR on ground
reflection properties is included in hem~

λA , which is provided by
the MISR instrument; that is, expression (53) is a function of
biome type, ground cover g, mean leaf area index of an
individual plant L, and hem~

λA . The mean over those values of g
and L, which passed the first test (6), is taken as the estimate
of FPAR; that is,
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where Ng,L is the number of g and L values, which satisfy (6).
When (6) has no solution (i.e., FA,bio=0), the algorithm
defaults to a NDVI-FPAR regression analysis to obtain an
estimate of FPAR [Myneni et al, 1997].

10. Flow of MISR LAI/FPAR Algorithm

The LAI retrieval algorithm first determines if the 1.1 km
subregion has a meaningful amount of vegetation by
calculating the normalized difference vegetation index
(NDVI) using the previously retrieved DHRs in the red and
near-IR bands. If the NDVI is less or equal to a threshold
value, the subregion is classified as barren, and no additional
processing is performed for LAI. Otherwise, for each biome-
specific canopy realization pmk=(ρm,1, ρm,2, ρm,3, ρm,4, LAIk),
condition (6) is checked. Here ρm,i, m=1, 2, … , Nρ, are
patterns of the effective ground reflectances in the MISR
bands λi, i=1, 2, 3, 4 (section 6). The value of LAI tested is
given by
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where the LAI index k=(j-1)NL+l, and Lmin, Lmax, gmin, gmax are
defined in section 5.2. The biome-dependent parameters ρm,i,
Lmin, Lmax, gmin, gmax, Nρ, NL, and Ng are found in the CART
file. The number N in (8), which determines the accuracy of
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the approximation of FA,bio, and Fr,A,bio, is NρNLNg. Let Lk, k=1,
2, … , NLAI  be the set of different values of LAIk. For each
biome type we now compute a histogram N1(Lk) as the count
of how many times the value Lk passed the condition (6). The
total number of valid solutions after completion of this test is

∑ =
= LAI

1 11,sol )(
N

k kLNN .

For those biomes in which Nsol,1>0, we now compute mean
LAI (11) and a measure of the spread in LAI (13) values for
each biome from
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After evaluation of these variables, conditions m(dA,bio,
LA,bio)=0 is checked. The value of dA,bio is replaced by -dA,bio if
this condition is fulfilled to the given accuracy εd, which is
stored in the CART file. Here the biome-dependent function
m(d,L) is defined by (24) and is found in the CART file. The
parameters Nsol,1, LA,bio, and dA,bio are archived for each biome
type. Only those pmk which pass condition (6) are subject to
the second step, which is the test of condition (7). This
comparison test is performed in a similar manner.

Equations (36) and (52) are used to evaluate the BHR and
HDRF for given pmk. The biome-dependent coefficients wbs,λ

and wq
λ defined by (42) and (43), respectively, are elements of

the CART file. The canopy reflectances r hem
bs,λ and r q,λ are

evaluated from (45) and (46). The variables 1,hem

,bs

≡q

λt , hem
,bs λa , tq,λ,

and aq,λ depend on the spectral leaf albedo and can be
expressed as (section 8, (47) and (48))
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Here fdir,λ is the ratio of direct radiation to the total (direct and
diffuse) radiation incident on the canopy; the coefficients

ptbs,dir, ptbs,dif, ptq, pa, and ω* are evaluated from (49), (50),
and (51); hem

dirbs,t , hem
difbs,t , hem

dirbs,a , and hem
difbs,a  are canopy

transmittances and absorptances for the “black soil” problem
at the reference leaf albedo ω* which result from direct
(subscript “bs,dir”) and diffuse (subscript “bs,dif”) incoming
irradiance; tq and aq are the canopy transmittance and
absorptance for the “S problem” at the reference leaf albedo
ω*. All these biome-dependent variables are stored in the
CART file. An actual value of fdir,λ, which the MISR
instrument provides together with BHR, is used to execute the
first comparison test. For the second test, fdir,λ=1 is set; that is,
the retrieved spectral BRF is used in this case. The FPAR is
specified as described in section 9.

11. Conclusions

The following features of the LAI/FPAR retrieval
technique are incorporated in the proposed MISR algorithm:

1. The measure theory allows us to build a function that
relates canopy reflectances to parameters influencing the
canopy reflectances without requiring a particular canopy
radiation model. This parameter distribution function
possesses the same properties as the cumulative distribution
function used in probability theory. Thus a desired value of
LAI can be expressed in the form of a mathematical
expectation, hence its simplicity and the ability to account for
uncertainties in input information.

2. Definition of the solution of the inverse problem does
not depend on a particular canopy radiation model.

3. The contents of the CART file are precisely defined. Its
elements are components of various forms of the energy
conservation law. They are determined from general
properties of radiative transfer and are independent of the
models used to generate the CART.

4. The parameter distribution function is composed using
elements of the CART file, and so the LAI retrieval algorithm
does not depend on a particular canopy radiation model.

5. The precise definition of the CART file allows the
formulation of requirements of the canopy radiation models
used to generate the CART file.

6. Simple relationships between spectral properties of
phytoelements and canopy absorptance and transmittance
allow us to establish a simple relationship between retrieved
LAI and FPAR. These relationships are also derived from the
energy conservation law and do not depend on a particular
canopy radiation model.

7. The simplicity of the LAI/FPAR retrieval algorithm,
however, was reached at the expense of some complications
in generating the CART file. Some of its elements are
solutions of various ill-posed problems, and so a special
technique was developed to generate the CART file.

Appendix

The measure theory is used to establish a relationship
between measured reflectances and canopy structure. This
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technique is a powerful way to relate values one quantifies
(e.g., probabilities, weights, mass, volume, area, etc.) to the
information one measures. Directly or indirectly, most modern
approaches use measures. Therefore we use this technique to
make the algorithm flexible. Unfortunately, some basic
knowledge of the mathematical foundation of the modern
probability theory [Kolmogorov, 1950] is required to follow
sections 2 and 3. In our paper, we follow the original mono-
graph of Kolmogorov [1950]. This theory can also be found in
the work of [Eisen, 1969]. Standard measure theory is
included mostly in programs for professional mathematicians
only. Therefore nonmathematical communities may not be
familiar with this theory. Chapter IX, sections 2-4 (pp. 337-
348) of Barnsley's [1993] monograph is a good introduction
to measures. Both measure and probability theories start with
a description of spaces [Barnsley, section II.1, definition 1.1].
We introduce the following spaces:

1. Space of canopy realizations P. This space is
represented by canopy structural types of global vegetation
(biome), each representing patterns of the architecture of an
individual tree and the entire canopy, and spectral properties
of phytoelements ωi at MISR bands λi, i=1,2,3,4 (section 5.5).
Each biome is characterized by ground cover g, mean LAI of
an individual tree L, and pattern of effective ground
reflectances (ρ1, ρ2, ρ3, ρ4) in the MISR bands. A detailed
parameterization of this space is discussed by Knyazikhin et
al. [this issue]. The element p of this space is the vector
p=(bio, ω1, ω2, ω3, ω4, ρ1, ρ2, ρ3, ρ4, L, g). Here bio can take
six values only; one pattern (ω1, ω2, ω3, ω4) of the spectral leaf
albedo per biome. Ground cover, the LAI of individual
vegetation, and effective ground reflectance can vary within
given biome-dependent ranges. Thus the space of canopy
realization is supposed to represent patterns of existing
vegetation canopies. The space P is the sum of six biome-
dependent subset Pbio, bio=1, 2, … , 6. The element of Pbio is
the vector (ρ1, ρ2, ρ3, ρ4, L, g). The probability theory treats
the spaces P and Pbio as sets of elementary events.

2. Spaces of observations of canopy reflectances DA and
Dr are introduced in (3). The probability theory treats the
spaces DA and Dr as sets of elementary events.

The measure theory requires the introduction of a sigma-
field [Barnsley, section IX.2, definitions 2.1 and 2.3]. The
Borel fields B(Pbio), B(DA), and B(Dr) associated with Pbio, DA,
and Dr, respectively, are taken as the required sigma-fields in
our paper [Barnsley, section IX.2, definition 2.5]. Elements of
B(Pbio), B(DA), and B(Dr) are defined to be events in
probability theory. Note that B(Pbio), B(DA), and B(Dr) are sets
whose elements are subsets of Pbio, DA, and Dr, respectively.

In order to relate LAI to the spaces Pbio, DA, and Dr, we
consider the functions l(p)= gL, r (Ω0,p), and A

&
hem(Ω0,p)

which to every element p from Pbio set in correspondence, a
value of LAI, a BRF-matrix (1), and the BHR-vector (2).
These functions are supposed to be measured with respect to
the Borel fields B(Pbio); that is,

)(})(|{)( biobio PBLplPpLS ∈<∈=  ,

)(}),(|{);( bio0
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biobio PBOpAPpPOW AAA ∈∈Ω∈=
&
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where OA and Or (see (4)) are elements from B(DA) and B(Dr),
respectively. As mentioned above, S(L), WA(OA;Pbio), and
Wr(Or;Pbio) are events in probability theory. For example, S(L)
is the event

"value of LAI is less then L" ,                  (A1)

the subset WA(OA;Pbio) is the event,

"modeled BHRs belong to the intervals
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,)(
~

[ 0
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0
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ii
ii

AA εε λλ +Ω−Ω , i=1,2,3,4" ,    (A2)

where )( 0
hem~ ΩλA  is the retrieved BHR at MISR spectral band

λ, and εi is uncertainty in the BHR retrieval. The set
QA(L,OA;Pbio) introduced in section 2 is the product of the
events S(L) and WA(OA;Pbio); that is, QA(L,OA;Pbio)=
S(L)∩WA(OA;Pbio).

The steps done above are standard preparatory work to
establish relationships between LAI and canopy reflectances
under minimum conceptual assumptions. This technique leads
to a diversity of relationships. For example, the curve [l(p),

),( 0
hem pA Ωλ ], where parameter p runs over the set Pbio,

outlines biome-specific relationships between LAI and canopy
reflectance )( 0

hem ΩλA . This example demonstrates a widely
used technique to derive and quantify various relationships,
e.g., one plots all points [l(p), ),( 0

hem pA Ωλ ] on LAI-BHR,
plane, and then evaluates a mean curve together with its
dispersion. This mean curve quantifies a desired LAI-BHR
relationship, while the dispersion characterizes its reliability.
One can also, for example, rearrange elements in the sets Pbio,
DA, and Dr by ranking them in increasing order of the function
l(p). This involves a reparameterization of these sets in terms
of LAI values (it will be recalled that LAI=l(p)) and separates
elements (which are subsets!) from B(Pbio), B(DA), and B(Dr)
of different "sizes" with respect to the values of LAI; and this
is the mathematical basis for quantifying the "size" of these
elements with respect to the LAI values in terms of "weight,"
or "mass," or "volume," or "probability," etc. A successful
way to assign different nonnegative real values to the
elements of different "sizes" was realized in the notion of
"measure" and Lebesgue's integral [Lebesgue, 1902]. This
concept underlies modern probability theory and integration
techniques.

Definition of a measure can be found in the work of
[Barnsley, section IX.3, definition 3.1, p. 341]. The theory
defines the probability of an event as a normalized measure;
that is, it includes one more condition in the definition of the
measure, namely, µ(X)=1. In our paper, we weighted LAI
values with respect to canopy reflectances by (8), (9) and (10).
However, to justify this approach, it must be shown that the
limits in (9) and (10) do not depend on the particular choice
of the subdivision (8). The proof of this assertion is provided
by a theorem [Barnsley, section IX.4, theorem 4.3, p. 347].
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Really, let A be an arbitrary element from the sigma-field
B(Pbio). We consider the characteristic function χA(p) whose
values is 1, if p∈A, and zero otherwise. The subdivision (8) is
a partition of Pbio [Barnsley, section IX.4, definition 4.3]. We
consider a function )( pN

Aχ  defined as

∑∑
=
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=

≡=
N

k

PA

N

k

PkA
N
A pppp

kk

11

)()()()(
,bio,bio

χχχχ  ,   (A3)

where pk∈Pbio,k is a point from the set Pbio,k. Let us introduce a
measure of the set A as the mean of )( pN

Aχ  over partition (8)
and points pk; that is,
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The value µN[A] satisfies the definition of measure [Barnsley,
section IX.3, definition 3.1, p. 341]. Moreover, it follows from
(A3) and (8) that µN[Pbio]=1. It means µN[A] is the probability
of the event A∈B(Pbio). This value depends on the partition
(8), N and the choice of the points pk. However, the theorem
[Barnsley, section IX.4, theorem 4.3, p. 347] asserts that (1)
the function (A3) converges uniformly to χA(p) when the
diameter of partition tends to zero; (2) the sequence µN[A]
converges to a value µ[A]; and (3) the value of the limit is
independent of the particular sequence of partitions and of the
choices of pk∈Pbio,k. Thus the measure defined as

][lim][ AA N

N
µµ

∞→
=                          (A4)

does not depend on subdivision (8).
Let us consider how (A4) is related to the LAI distribution

functions FA,bio and Fr,A,bio introduced in (9) and (10). The
function FA,bio is the probability of the event S(L) (equation
(A1)) under the condition that the event WA(OA;Pbio) (equation
(A2)) already occurred. It follows from the definition of the
conditional probability that
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In section 2, this definition is presented in an equivalent form,
namely,
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If the events WA(OA;Pbio) and S(L) are independent, then
FA,bio(L)=µ[S(L)]. This underlies our definition of the
saturation domain (18): a measured spectral BHR belongs to
the saturation domain if the events WA(OA;Pbio) and “value of
LAI is greater or equal to L*” are independent. The function
Fr,A,bio is the probability of the event S(L) under the condition
that the event Wr(Or;Pbio)∩WA(OA;Pbio) already occurred.

We also note one interesting property of the functions
FA,bio and Fr,A,bio. It follows from the definition of FA,bio that if
there exists only one parameter p*∈Pbio for which modeled
BHRs belong to the intervals (A2), then the function FA,bio

coincides with the Heaviside function; that is,





 ≤=

otherwise  ,1

, if  ,0
)(

*

bio,
LL

LFA

where L*=l(p*). It means that the solution of the inverse
problem defined by (11) coincides with this unique solution
L*=l(p*). The same is true if there are many parameters p∈Pbio

for which modeled BHRs belong to the intervals (A2), while
values l(p) slightly vary about a value L*. It means that if the
inverse problem has a unique solution, the algorithm specifies
it. If not, the algorithm provides the most probable solution.
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